MEM6810 Engineering Systems Modeling and Simulation

Sino-US Global Logistics Institute Shanghai Jiao Tong University

Spring 2024 (full-time)

Assignment 4

Due Date: June 18 (14:00)

Instruction

- (a) You can answer in English or Chinese or both.
- (b) Show enough intermediate steps.
- (c) Write your answers independently.
- (d) If you copy the solutions from somewhere, you must indicate the source.

. .

Question 1 (30 points)

We have $k > 2$ different (system) designs, and their mean performances are θ_i , $i =$ $1, 2, \ldots, k$. We want to select the one with the largest mean performance. Bechhofer's Procedure (Lec 9 page 19/29) can ensure that when Assumptions 1-4 (Lec 9 page 18/29) are satisfied, P{select the larget θ_i } $\geq 1 - \alpha$. Now we relax Assumption 3. Give a rigorous proof that, when Assumptions 1, 2, and 4 (Lec 9 page 18/29) are satisfied,

$$
\mathbb{P}\Big\{\Big|\text{selected }\theta_i-\max_{1\leq i\leq k}\theta_i\Big|<\delta\Big\}\geq 1-\alpha.
$$

Question 2 (20 points)

Explain why the Paulson's Procedure (Lec 9 page 24/29), under Assumptions 1-3 (Lec 9 page 18/29) and common known variance assumption, will stop almost surely (i.e., with probability one). Try to be as rigorous as possible.

Question 3 (50 points)

Consider the simulation optimization problem,

$$
\min_{\pmb{x}\in\mathcal{X}}\ g(\pmb{x}),
$$

where $g(x) := \mathbb{E}[G(x)]$ and $G(x)$ is the output of a simulation replication conducted at x . Let x^* be a global optimal solution. Grid search is often used to find a global optimal solution to the problem. It first chooses m grid points, x_1, x_2, \dots, x_m , in X.

It then takes r i.i.d. observations from each of the m grid points and calculates the sample means, $G(\boldsymbol{x}_1), G(\boldsymbol{x}_2), \cdots, G(\boldsymbol{x}_m)$. Let

$$
\hat{\boldsymbol{x}}_m^* = \arg\min\{\bar{G}(\boldsymbol{x}_1), \bar{G}(\boldsymbol{x}_2), \cdots, \bar{G}(\boldsymbol{x}_m)\}\text{ and }\boldsymbol{x}_m^* = \arg\min\{g(\boldsymbol{x}_1), g(\boldsymbol{x}_2), \cdots, g(\boldsymbol{x}_m)\}.
$$

Suppose that the grid points are chosen such that $g(x_m^*) \to g(x^*)$ as $m \to \infty$. (How to ensure the above condition is of course an important question in practice. Here we simply assume we can do it.) We further assume that $\sup_{x \in \mathcal{X}} \text{Var}[G(x)] = \sigma^2 < \infty$. In order to ensure that $g(\hat{x}_m^*) \to g(x^*)$ almost surely as $m \to \infty$, r and m need to satisfy some relationship. Prove that, if r will increase when m increases (that is to say $r = r(m)$ is an increasing function on m) and

$$
\sum_{m=1}^{\infty} \frac{m}{r(m)} < \infty,
$$

then the above almost sure convergence holds.

Hint: You may need to use the following fact: $|\min_{i=1,\dots,k} \{a_i\} - \min_{i=1,\dots,k} \{b_i\}| \leq$ $\max_{i=1,\ldots,k} \{|a_i-b_i|\}$, for any given $\{a_1,\ldots,a_k\}$ and $\{b_1,\ldots,b_k\}$. You can find some idea from [L. Jeff Hong, Barry L. Nelson (2006). Discrete optimization via simulation using COMPASS. Operations Research 54(1):115-129. https://doi.org/10.1287/opre.1050.0237]